Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1324392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567153

RESUMO

Background: Significant advancements in systemic treatment for hepatocellular carcinoma have been made in recent years. However, the optimal timing of systemic treatment before or after surgery remains unknown. This study aims to evaluate the impact of sequencing systemic treatment and surgical intervention on the long-term prognosis of hepatocellular carcinoma patients. Methods: In our study, we analyzed data from patients diagnosed with primary liver cancer (2004-2015) extracted from the SEER database. Patients who underwent both systemic treatment and surgical intervention were selected, divided into preoperative and postoperative systemic therapy groups. The primary endpoint of the study is overall survival(OS), and the secondary endpoint is cancer-specific survival (CSS). Propensity score matching (PSM) reduced the influence of confounding factors, while Kaplan-Meier curves and a multivariable Cox proportional hazards model accounted for variables during survival analysis. Results: A total of 1918 eligible HCC patients were included, with 1406 cases in the preoperative systemic treatment group and 512 cases in the postoperative systemic treatment group. Survival analysis showed that both the preoperative group demonstrated longer median overall survival (OS) and median cancer-specific survival (CSS) before and after PSM. After conducting multivariate COX regression analysis with stepwise adjustment of input variables, the postoperative systemic treatment group continued to exhibit a higher risk of all-cause mortality (HR: 1.84, 95% CI: 1.55-2.1) and cancer-specific mortality (HR: 2.10, 95% CI: 1.73-2.54). Subgroup analysis indicated consistent results for overall survival (OS) across different subgroups. Conclusions: Hepatocellular carcinoma patients from the SEER database who received preoperative systemic therapy had superior OS and CSS compared to those who received postoperative systemic therapy.

2.
Clin Ther ; 46(3): 275-284, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38360447

RESUMO

PURPOSE: The co-existence of Parkinson disease (PD) and myasthenia gravis (MG) in an individual should be exceptionally rare. The purpose of this study was to systematically review the current literature regarding the therapeutic effect and side effects of pharmacotherapy on patients with PD and MG. METHODS: Five bioscience and engineering databases (MEDLINE via PubMed, Cochrane Library, Scopus, EMBASE, and China National Knowledge Infrastructure) were searched from inception through February 21, 2022. Case reports and case series studies investigating pharmacotherapy in patients with PD and MG were included. Procedures were followed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. The methodologic quality of included studies was evaluated by using the National Institutes of Health Quality Assessment Tool for Case Series Studies. FINDINGS: Sixteen case reports and 5 case series studies with 32 participants met the inclusion criteria. Eight studies were rated as good quality, 10 were fair quality, and 3 were poor quality. The side effects of pharmacotherapy for PD or MG led to another disease, indicating an imbalance between dopamine and acetylcholine within human bodies. IMPLICATIONS: When treating a patient who has PD or MG, health providers should be cautious about the occurrence of another disease. Timely treatment must rely on monitoring new symptoms as soon as the pharmacotherapy for PD or MG is initiated. Physical therapy may be helpful in decreasing the side effects of pharmacotherapy in patients with PD and MG. A new treatment pattern of pharmacotherapy + physical therapy for patients with PD and MG warrants further research. International Prospective Register of Systematic Reviews identifier: CRD42022308066.


Assuntos
Miastenia Gravis , Doença de Parkinson , Estados Unidos , Humanos , Doença de Parkinson/tratamento farmacológico , Miastenia Gravis/tratamento farmacológico , Pesquisa , China
3.
Phytomedicine ; 126: 155437, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394735

RESUMO

BACKGROUND: In diabetic liver injury, nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease. Rutin is a bioflavonoid produced by the hydrolysis of glucosidases to quercetin. Its biological activities include lowering blood glucose, regulating insulin secretion, regulating dyslipidemia, and exerting anti-inflammatory effects have been demonstrated. However, its effect on diabetic NAFLD is rarely reported. PURPOSE: Our study aimed to investigate the protective effects of Rutin on diabetic NAFLD and potential pharmacological mechanism. METHODS: We used db/db mice as the animal model to investigate diabetic NAFLD. Oleic acid-treated (OA) HeLa cells were examined whether Rutin had the ability to ameliorate lipid accumulation. HepG2 cells treated with 30 mM/l d-glucose and palmitic acid (PA) were used as diabetic NAFLD in vitro models. Total cholesterol (TC) and Triglycerides (TG) levels were determined. Oil red O staining and BODIPY 493/503 were used to detect lipid deposition within cells. The indicators of inflammation and oxidative stress were detected. The mechanism of Rutin in diabetic liver injury with NAFLD was analyzed using RNA-sequence and 16S rRNA, and the expression of fat-synthesizing proteins in the 5' adenosine monophosphate-activated protein kinase (AMPK) pathway was investigated. Compound C inhibitors were used to further verify the relationship between AMPK and Rutin in diabetic NAFLD. RESULTS: Rutin ameliorated lipid accumulation in OA-treated HeLa. In in vitro and in vivo models of diabetic NAFLD, Rutin alleviated lipid accumulation, inflammation, and oxidative stress. 16S analysis showed that Rutin could reduce gut microbiota dysregulation, such as the ratio of Firmicutes to Bacteroidetes. RNA-seq showed that the significantly differentially genes were mainly related to liver lipid metabolism. And the ameliorating effect of Rutin on diabetic NAFLD was through AMPK/SREBP1 pathway and the related lipid synthesis proteins was involved in this process. CONCLUSION: Rutin ameliorated diabetic NAFLD by activating the AMPK pathway and Rutin might be a potential new drug ingredient for diabetic NAFLD.


Assuntos
Diabetes Mellitus , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Proteínas Quinases Ativadas por AMP/metabolismo , Rutina/farmacologia , Células HeLa , RNA Ribossômico 16S , Fígado , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Camundongos Endogâmicos C57BL
4.
Tob Prev Cessat ; 9: 34, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026821

RESUMO

INTRODUCTION: Nicotine-containing products (NCPs) such as electronic nicotine delivery systems (ENDS) are increasingly common throughout the landscape of youth use of nicotine-containing products (NCP), and have overtaken traditional cigarette smoking modalities. This study seeks to examine the genetic and environmental influences on liability for susceptibility and initiation of ENDS and other NCPs among US children. METHODS: Data were drawn from 886 monozygotic (MZ) and dizygotic (DZ) twin pairs aged 9-10 years in the Adolescent Brain & Cognitive Development (ABCD) study at the baseline during 2016-2018. Heritability (h2) measured the proportion of the total phenotypic variation attributable to genes. Variance component models were utilized to analyze influences from the common environment (c2) and unique environmental factors (e2), taking into account correlations within twin pairs. RESULTS: The national sample included 50% females, 69.5% of non-Hispanic Whites, 12.8% of non-Hispanic Blacks, and 11.6% of Hispanics, with a mean age of 121.5 months. The twin sets were 60% DZ and 40% MZ. Heritability was low for NCP susceptibility (h2=0) and moderate for NCP initiation (h2=39%, p=0.02). The variance associated with NCP susceptibility was primarily influenced by environmental factors, especially one's unique factors (c2=37%, p<0.0001 vs e2=63%, p<0.0001). In contrast, the variance associated with NCP initiation was split across common and unique environmental factors (c2=32%, p=0.02 vs e2=29%, p=0.02). CONCLUSIONS: In the era with ENDS use surging among youth, NCP initiation remains to be a heritable trait with joint influence from the environment. NCP susceptibility is largely influenced by environmental factors, especially unique environments. Continued assessment of gene × environment interaction can better inform future youth NCP interventions.

5.
Phytomedicine ; 112: 154700, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36774842

RESUMO

BACKGROUND: Diabetic kidney disease (DKD) is a primary microvascular complication of diabetes. However, a complete cure for DKD has not yet been found. Although there is evidence that Rutin can delay the onset of DKD, the underlying mechanism remains unclear. PURPOSE: To investigate the renoprotective effect of Rutin in the process of DKD and to explore its potential molecular mechanisms. METHODS: Db/db mice and high glucose (HG)-induced human renal glomerular endothelial cells (GEnCs) were used as in vivo and in vitro models, respectively. Western blot (WB), Immunohistochemistry (IHC)and Immunofluorescence (IF) staining were used to identify the expression level of proteins associated with endothelial-to-mesenchymal transition (EndMT) and autophagy. Tandem Mass Tag (TMT)-based proteomics analysis was utilized to reveal the mechanism of Rutin in DKD. Transfection with small interfering RNA (siRNA) to reveal the role of histone deacetylase 1 (HDAC1) in HG-induced GEnCs. RESULTS: Following 8 weeks of Rutin administration, db/db mice's kidney function and structure significantly improved. In HG-induced GEnCs, activation of autophagy attenuates cellular EndMT. Rutin could alleviate EndMT and restore autophagy in vivo and in vitro models. Proteomics analysis results showed that HDAC1 significantly downregulated in the 200 mg/kg/d Rutin group compared with the db/db group. Transfection with si-HDAC1 in GEnCs partially blocked HG-induced EndMT and restored autophagy. Furthermore, Rutin inhibits the phosphorylation of the PI3K / AKT/ mTOR pathway. HDAC1 overexpression was suppressed in HG-induced GEnCs after using Rapamycin, a specific mTOR inhibitor, verifying the correlation between mTOR and HDAC1. CONCLUSION: Rutin alleviates EndMT by restoring autophagy through inhibiting HDAC1 via the PI3K/AKT/mTOR pathway in DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Células Endoteliais/metabolismo , Histona Desacetilase 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia
6.
Int J Biol Macromol ; 188: 983-992, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34403677

RESUMO

Plant laccases have been proposed to participate in lignin biosynthesis. However, there is no direct evidence that individual laccases in Populus can polymerize lignin monomers and alter cell wall structure. Here, a Populus laccase, PtrLAC16, was expressed and purified in a eukaryotic system. Enzymatic analysis of PtrLAC16 showed that it could polymerize lignin monomers in vitro. PtrLAC16 preferred sinapyl alcohol, and this preference is associated with an altered S/G ratio in transgenic Populus lines. PtrLAC16 was localized exclusively in the cell walls of stem vascular tissue, and a reduction in PtrLAC16 expression led to a significant decrease in lignin content and altered cell wall structure. There was a direct correlation between the inhibition of PtrLAC16 expression and structural changes in the stem cell wall of Populus. This study provides direct evidence that PtrLAC16 plays a key role in the polymerization of lignin monomers, especially for sinapyl lignin, and affects the formation of xylem cell walls in Populus.


Assuntos
Biocatálise , Parede Celular/enzimologia , Lacase/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Polimerização , Populus/enzimologia , Xilema/enzimologia , Regulação da Expressão Gênica de Plantas , Cinética , Lacase/isolamento & purificação , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Feixe Vascular de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Transporte Proteico , Análise Espectral Raman , Frações Subcelulares/metabolismo , Nicotiana , Xilema/ultraestrutura
7.
Cancer Commun (Lond) ; 41(7): 538-559, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33955720

RESUMO

As one of the most studied ribonucleic acid (RNA) modifications in eukaryotes, N6 -methyladenosine (m6 A) has been shown to play a predominant role in controlling gene expression and influence physiological and pathological processes such as oncogenesis and tumor progression. Writer and eraser proteins, acting opposite to deposit and remove m6 A epigenetic marks, respectively, shape the cellular m6 A landscape, while reader proteins preferentially recognize m6 A modifications and mediate fate decision of the methylated RNAs, including RNA synthesis, splicing, exportation, translation, and stability. Therefore, RNA metabolism in cells is greatly influenced by these three classes of m6 A regulators. Aberrant expression of m6 A regulators has been widely reported in various types of cancer, leading to cancer initiation, progression, and drug resistance. The close links between m6 A and cancer shed light on the potential use of m6 A methylation and its regulators as prognostic biomarkers and drug targets for cancer therapy. Given the notable effects of m6 A in reversing chemoresistance and enhancing immune therapy, it is a promising target for combined therapy. Herein, we summarize the recent discoveries on m6 A and its regulators, emphasizing their influences on RNA metabolism, their dysregulation and impacts in diverse malignancies, and discuss the clinical implications of m6 A modification in cancer.


Assuntos
Adenosina , Neoplasias , Adenosina/metabolismo , Humanos , Metilação , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA , RNA Mensageiro/metabolismo
8.
J Exp Bot ; 71(6): 1943-1955, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-31858133

RESUMO

Vacuolar processing enzyme (VPE) is responsible for the maturation and activation of vacuolar proteins in plants. We found that ßVPE was involved in tapetal degradation and pollen development by transforming proproteases into mature protease in Arabidopsis thaliana. ßVPE was expressed specifically in the tapetum from stages 5 to 8 of anther development. The ßVPE protein first appeared as a proenzyme and was transformed into the mature enzyme before stages 7-8. The recombinant ßVPE protein self-cleaved and transformed into a 27 kDa mature protein at pH 5.2. The mature ßVPE protein could induce the maturation of CEP1 in vitro. ßvpe mutants exhibited delayed vacuolar degradation and decreased pollen fertility. The maturation of CEP1, RD19A, and RD19C was seriously inhibited in ßvpe mutants. Our results indicate that ßVPE is a crucial processing enzyme that directly participates in the maturation of cysteine proteases before vacuolar degradation, and is indirectly involved in pollen development and tapetal cell degradation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cisteína Endopeptidases , Cisteína Proteases , Pólen , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Regulação da Expressão Gênica de Plantas , Pólen/genética , Pólen/metabolismo , Vacúolos/metabolismo
9.
Int J Biol Macromol ; 137: 703-711, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31279878

RESUMO

The vacuolar processing enzyme (VPE) plays an important role in PCD and was originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants. We found that γVPE is involved in PCD of xylem fiber cells through the activation of CEP1 proproteases into mature protease in Arabidopsis. The γVPE protein was expressed specifically in cambium cells cambium, the primary phloem and the primary xylem during stem development. The recombinant γVPE appearing as a proenzyme at pH 7.0, and then transforming into a 40-kD mature enzyme at pH 5.5 in vitro by self-cleaving. The mature γVPE protein activated CEP1 maturation in vitro, whereas this activity was inhibited in the γvpe mutant. Transmission electron microscopy showed delayed PCD in fiber cells and thickening of secondary fiber cell walls in the γvpe mutant. Transcriptome analysis showed that the expression of 2001 genes was significantly altered expression in the γvpe mutants, and most of them are important for secondary cell wall formation and PCD. Our results demonstrate that γVPE is a crucial processing enzyme for xylem fiber cells PCD during stem development.


Assuntos
Apoptose , Arabidopsis/citologia , Arabidopsis/enzimologia , Cisteína Endopeptidases/metabolismo , Xilema/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína Endopeptidases/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Mutação , Biossíntese de Proteínas
10.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 31(6): 762-767, 2019 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-31315738

RESUMO

OBJECTIVE: To explore the protective effect of hydrogen-rich water on the oxidative stress injury of astrocytes in mice and its effect on phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signal pathway. METHODS: In vitro, mice astrocytes were cultured and the logarithmic growth period cells were taken for experiment. (1) Experiment one: some cells were acted by 1.25, 2.50, 5.00, 10.00 µmol/L hydrogen peroxide (H2O2) for 20 minutes to determine the appropriate concentration required for astrocyte damage induced by H2O2; cultivating 3, 6, 9, and 12 hours with hydrogen-rich water of 25, 50, 100, and 200 µmol/L, respectively, to determine the concentration and time of hydrogen-rich water pretreatment; the 50 µmol/L hydrogen-rich water was cultured together with PI3K/Akt signal pathway inhibitors wortmannin (WM) 200 nmol/L or 400 nmol/L to determine the best inhibition concentration of wortmannin. Astrocyte activity was detected by methyl thiazolyl tetrazolium (MTT) colorimetry. (2) Experiment two: some cells were divided into blank control group, H2O2 injury group, hydrogen-rich water pretreatment group (HW+H2O2 group), and co-culture of hydrogen-rich water and wortmannin pretreatment group (HW+WM+H2O2 group). The mRNA expressions of PI3K and Akt were detected by reverse transcription-polymerase chain reaction (RT-PCR); the protein expressions of PI3K, Akt and phosphorylated Akt (p-Akt) were detected by Western Blot. RESULTS: (1) Experiment one: the survival rate of the blank control group was 100%. Cell activity gradually decreased with the increase of H2O2 concentration, and the survival rate of the H2O2 action 20 minutes cells of 2.50 µmol/L was reduced to about 50%, so a cell injury model was established at this concentration. With the increase of hydrogen-rich water pretreatment concentration, and the duration of action, the cell survival rate increased first and then decreased. The cell survival rate was highest when 50 µmol/L hydrogen-rich water was pretreated with 9 hours, so a hydrogen-rich water pre-protection model was established. After 200 nmol/L or 400 nmol/L wortmannin was cultured together with hydrogen-rich water, cell activity was inhibited, and the cell survival rate of 200 nmol/L wortmannin group was no significantly different compared with that of H2O2 injury group, so the astrocyte suppression model was established. (2) Experiment two: compared with the blank control group, the mRNA expressions of PI3K and Akt and the protein expressions of PI3K, Akt and p-Akt were significantly decreased in the H2O2 injury group. Compared with the H2O2 injury group, the PI3K, Akt mRNA expressions and PI3K, Akt, p-Akt protein expressions were significantly increased in the HW+H2O2 group [PI3K mRNA (2-ΔΔCT): 0.843±0.019 vs. 0.631±0.038, Akt mRNA (2-ΔΔCT): 0.591±0.025 vs. 0.558±0.037, PI3K/ß-actin: 1.277±0.008 vs. 0.757±0.004, Akt/ß-actin: 1.308±0.015 vs. 0.682±0.006, p-Akt/ß-actin: 1.210±0.005 vs. 0.614±0.005, all P < 0.05]. The mRNA expressions of PI3K, Akt in the HW+WM+H2O2 group was 0.784±0.159 and 0.556±0.037, respectively, and the protein expressions of PI3K, Akt, p-Akt was 0.715±0.006, 0.686±0.005, and 0.606±0.004, respectively, both were significantly lower than those in HW+H2O2 group (all P < 0.05), and there was no significant difference with H2O2 injury group (all P > 0.05). CONCLUSIONS: Hydrogen-rich water activates the PI3K/Akt pathway, thereby mediates mice astrocytes to exert the biological function of antioxidant.


Assuntos
Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Água/química , Água/farmacologia , Animais , Modelos Animais de Doenças , Peróxido de Hidrogênio/farmacologia , Camundongos
11.
J Exp Bot ; 70(1): 205-215, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376110

RESUMO

Both tracheary elements and fiber cells undergo programmed cell death (PCD) during xylem development. In this study we investigated the role of papain-like cysteine protease CEP1 in PCD in the xylem of Arabidopsis. CEP1 was located in the cell wall of xylem cells, and CEP1 expression levels in inflorescence stems increased during stem maturation. cep1 mutant plants exhibited delayed stem growth and reduced xylem cell number compared to wild-type plants. Transmission electron microscopy demonstrated that organelle degradation was delayed during PCD, and thicker secondary walls were present in fiber cells and tracheary elements of the cep1 mutant. Transcriptional analyses of the maturation stage of the inflorescence stem revealed that genes involved in the biosynthesis of secondary wall components, including cellulose, hemicellulose, and lignin, as well as wood-associated transcriptional factors, were up-regulated in the cep1 mutant. These results suggest that CEP1 is directly involved in the clearing of cellular content during PCD and regulates secondary wall thickening during xylem development.


Assuntos
Apoptose/genética , Arabidopsis/fisiologia , Parede Celular/genética , Cisteína Endopeptidases/genética , Xilema/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Parede Celular/metabolismo , Cisteína Endopeptidases/metabolismo , Regulação da Expressão Gênica de Plantas , Xilema/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA